pnn2 studies on $K^+ \rightarrow \pi^+ \pi^\circ$ Target Scatters

e949 September 2004 meeting

Benji Lewis, UNM

Modivation for $K^+ \rightarrow \pi^+\pi^\circ$ -scatter studies

• As seen in e787, Target $K_{\pi 2}$ -scatters is the dominant background ($\sim 70\%$).

TGrecon Algorithm

- Reasons to create a new SWATHccd algorithm:
 - Allow KINKs in the target π track.
- ullet Differences between TGrecon and SWATHccd
 - TGrecon uses a swath as a criteria for picking the best K/ π match. SWATHccd is highly dependent on the UTC track swath.
 - Late Ks (> 8ns) have the same 'weight' during K/π matching.
 - TGrecon allows for quicker improvements due to modular design.
- ullet Similarities between TGrecon and SWATHccd
 - Good agreement in TG quantities.

Improvements

- TGrecon

Opposite-side Pion problem.

Apply Swath-Likilyhood function to tracks with kinks.

further improves TGrecon emulation of Swath.

Kink Finding Algorithm

- How KinkFinder works.
 - Classifies π fibers as kinked or non-kinked.
 - Does Least-squares fit on non-kinked fibers.
 - Requirements:

Must have ≥ 2 fibers off swath (swath = 0.8cm) Pass a minimum angle threshold ($\sim 7^{\circ}$).

- Fit a track to the non-kinked fibers.
- ullet Improvements to KinkFinder .
 - Improved routine to order the fibers.
 Determines the point of the scatter.

2004/02/04 13.55

KinkFinder Efficiency

- ullet Use a $K_{\mu2}$ event to determine false kink rate.
 - We don't expect the μ from $K_{\mu 2}$ to scatter in the target. So any kinks flaged by KinkFinder as a scatter will mostly likely be wrong.
 - Setup Cuts: PS Cuts (mod for Kinks)

Flagged as kink.

Reconstructed by $SWATHccd\ / TGrecon$.

$$(T_{\pi} - T_K) > 6$$

– Tighter Cuts:

Improvements in Red

Real Kinks founded by visual examination.

small set	Sample	Flagged as Kink	Real Kinks	False Kinks
$K_{\mu 21}$	7625	69 (44)	-	0.9% (0.6%)
TG reconstructed	7120	62	-	0.9%
Setup cuts	4288 (3245)	21 (4)	3 (2)	$0.4\% \ (0.06\%)$
w/Tight cuts	2858 (584)	7 (1)	2 (1)	$0.2\% \ (0.0\%)$

Kinks in pnn2 data

- ullet e787 $K_{\pi2}$ -scatter background
 - Used 17 classes of events inside the $K_{\pi 2}$ -BOX or PNN2-BOX regions with various cuts applied. Generally, CCDPUL or 567 was inverted.

CCDPUL - find extra energy in kaon fibers at π time.

CHI567 - is the probability from the target track fitting program.

Description	CLASS 7	CLASS 9	ONEBEAM
NO CCD FIT	1	-	-
K Decay in IC	1	4	-
T_{π} inconsistent	1*	1*	-
Kink in π^+ track	3	7	-
π^+ scatter under K	-	6	-
Gap in π^+ fibers	-	2	-
$T_{\pi} < T_{K}$	-	-	1
Prompt K decay	_	=	4
Totals	6	21	5

^{* =} same event

Figure 1: Run 30190, event 43746 shows a clear kink in the pion fibers. From the response of the CCDs shown in figure 2, it is clear that the pion track traverses the three kaon fibers before scattering.

1

- e949 1/3 Pass1 output
- Using SWATHccd as the main reconstuctor TGrecon tries when SWATHccd fails.

	Sample	Flagged as Kink	Kinks
pass1 output	1219035 (337524)	7364 (6221)	0.6% (1.8%)
TG reconstructed	861137	6675	0.8%
Setup cuts	377735 (28166)	1787 (253)	0.5% (0.9%)

78M events out at pass1 $\rightarrow \sim 400k$ TG scatters.

Kinks that passed PV

Before...

2004/09/14 05.03

2004/09/14 04.46

2004/09/14 04.50

Kinks that passed PV <u>Before...</u>

2004/09/14 05.10

Kinks that passed PV <u>Before...</u>

2004/09/14 05.16

run 49157 event 8640 KINK 140.291° rzk 8.45552cm rznk 8.45552cm slope 0.647129 sm 0.0610504 r² 0.962854 ptot 216.264 MeV/c rtot 34.1392 cm etot 109.67 MeV 94.3165° trs 10.0098

Kinks that passed PV <u>Before...</u>

2004/09/14 05.11

2004/09/14 05.05

8

2004/09/14 05.07 run 50148 event 3687 KINK 36.8138° rzk 8.08895cm rznk 8.08895cm slope 0.525032 sm 0.0610504 r² 0.713587 ptot 212.601 MeV/c rtot 33.1624 cm etot 114.286 MeV 96.2289° trs 18.7097 8 6 2 1 0.8 0.2 9.1 17.6 4.7 0 -2 -4 -6 -8

0

2

6

8

-4

TG Double Hit Kaon - r16c18 t=1.5 e=6.5

-6

-2